- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Timko, Michael P. (2)
-
Axtell, Michael J. (1)
-
Bellis, Emily S. (1)
-
Berger, Bryan W (1)
-
Blumenthal, Maggie (1)
-
Clarke, Christopher R. (1)
-
Haynes, Christy L (1)
-
Hearne, Sarah J. (1)
-
Honaas, Loren (1)
-
Jones, Jasmine P (1)
-
Lasky, Jesse R. (1)
-
Liang, Yanna (1)
-
Lopez, Lua (1)
-
Nason, Sara L (1)
-
Ralph, Paula E. (1)
-
Silliboy, Richard (1)
-
Stanley, Chelli (1)
-
Thomas, Sara (1)
-
Timko, Michael P (1)
-
Unachukwu, Nnanna (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Clarke, Christopher R.; Timko, Michael P.; Yoder, John I.; Axtell, Michael J.; Westwood, James H. (, Annual Review of Phytopathology)Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds ( Striga spp.) and broomrapes ( Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant–pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.more » « less
-
Lopez, Lua; Bellis, Emily S.; Wafula, Eric; Hearne, Sarah J.; Honaas, Loren; Ralph, Paula E.; Timko, Michael P.; Unachukwu, Nnanna; dePamphilis, Claude W.; Lasky, Jesse R. (, Weed Science)Abstract Host-specific interactions can maintain genetic and phenotypic diversity in parasites that attack multiple host species. Host diversity, in turn, may promote parasite diversity by selection for genetic divergence or plastic responses to host type. The parasitic weed purple witchweed [ Striga hermonthica (Delile) Benth.] causes devastating crop losses in sub-Saharan Africa and is capable of infesting a wide range of grass hosts. Despite some evidence for host adaptation and host-by- Striga genotype interactions, little is known about intraspecific Striga genomic diversity. Here we present a study of transcriptomic diversity in populations of S. hermonthica growing on different hosts (maize [ Zea mays L.] vs. grain sorghum [ Sorghum bicolor (L.) Moench]). We examined gene expression variation and differences in allelic frequency in expressed genes of aboveground tissues from populations in western Nigeria parasitizing each host. Despite low levels of host-based genome-wide differentiation, we identified a set of parasite transcripts specifically associated with each host. Parasite genes in several different functional categories implicated as important in host–parasite interactions differed in expression level and allele on different hosts, including genes involved in nutrient transport, defense and pathogenesis, and plant hormone response. Overall, we provide a set of candidate transcripts that demonstrate host-specific interactions in vegetative tissues of the emerged parasite S. hermonthica . Our study shows how signals of host-specific processes can be detected aboveground, expanding the focus of host–parasite interactions beyond the haustorial connection.more » « less
An official website of the United States government
